Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Doyle Britton

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA

Correspondence e-mail: britton@chem.umn.edu

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.02 \AA$
Disorder in main residue
R factor $=0.050$
$w R$ factor $=0.095$
Data-to-parameter ratio $=10.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2,5,6-Trichloro-4-iodoisophthalonitrile

The molecule of the title compound, $\mathrm{C}_{8} \mathrm{Cl}_{3} \mathrm{IN}_{2}$, is disordered in the crystal. For the major component, there is an I $\cdots \mathrm{N}$ intermolecular contact of 3.06 (3) \AA and two $\mathrm{Cl} \cdots \mathrm{N}$ contacts of 3.10 (3) and 3.19 (3) \AA. In all three contacts, the angle is approximately linear at the halogen atom and bent at the nitrogen.

Comment

The structure of tetrachloroisophalonitrile was determined previously (Britton, 1981). The structure of the title compound, (I), has been determined to examine the effect on the packing caused by the replacement of one Cl atom by an I atom. The I atom is a much stronger Lewis acid than the Cl atom and the question was whether the expected stronger $\mathrm{I} \cdots \mathrm{N}-\mathrm{C}$ interaction would lead to a significant change in the packing.

(I)

Fig. 1 shows the atom labeling and anisotropic displacement ellipsoids for the compound. All of the bond distances and angles are normal. The molecule is disordered by rotation about an axis passing approximately through Cl12 and Cl15. The effect of this disorder is to exchange an I atom and a Cl atom. The minor component is shown in outline in Fig. 1. The major component of the disorder had an abundance of 0.735 (3).

The molecules pack to form double ribbons, which are close to planar [molecular tilt $1.2(1)^{\circ}$ out of the plane of the

Figure 1

The molecule of (I). Displacement ellipsoids are drawn at the 50% probability level. The molecule is disordered with an exchange of Cl and I. The minor component of the disorder is shown in outline; only two of the minor component atoms are labeled.

Received 18 December 2003
Accepted 5 January 2004
Online 17 January 2004

Figure 2
The packing of $\mathrm{ICl}_{3} \mathrm{C}_{6}(\mathrm{CN})_{2}$, viewed normal to the molecular plane. The $\mathrm{I} \cdots \mathrm{C}$ and $\mathrm{Cl} \cdots \mathrm{NC}$ contacts are shown as dashed lines. Only the major component of the disorder is shown.

Figure 3
The packing of $\mathrm{Cl}_{4} \mathrm{C}_{6}(\mathrm{CN})_{2}$, viewed normal to the molecular plane. The $\mathrm{Cl} \cdots \mathrm{NC}$ contacts are shown as dashed lines.
ribbon]. Fig. 2 shows a portion of the ribbon (using the major component only) plus contacts with adjacent ribbons. The two halves of the ribbon are related by a 2_{1} axis. Table 1 gives the metric values for the different contacts for each of the four possible orientations of the disorder: major-major, majorminor, minor-major, and minor-minor, which occur, respectively, in $54.0,19.5,19.5$, and 7.0% of the contacts. In all three contacts, the angular arrangement is close to linear at the halogen and bent at the nitrogen. Ideally, for a Lewis acidbase interaction the angles would be near linear at both atoms, but bending at the nitrogen is well known in other structures [see Britton (2002) for a number of examples]. The contact distances in the major-major component are typical for these sorts of contacts. The $I \cdots N$ contact at $3.06(3) \AA$ appears shorter than either of the $\mathrm{Cl} \cdots \mathrm{N}$ contacts [3.10 (3) and 3.19 (3) $\AA]$, although not beyond experimental error.

The major component of the disorder has the $\mathrm{I} \cdots \mathrm{N}$ contact within the ribbon while the minor component has it between adjacent ribbons. Given the large degree of disorder the two different arrangements must be close in energy. The distances and angles, especially those involving the minor component, have unusually large s.u. values as a consequence of the disorder and cannot be used to explain the disorder in any detail.

The original intent was to look for changes with respect to the structure of the corresponding $\mathrm{Cl}_{4} \mathrm{C}_{6}(\mathrm{CN})_{2}$ (Britton, 1981). The packings are similar, as can be seen in Fig. 3, which shows the view for the Cl_{4} structure corresponding to Fig. 2. The difference in the ribbon is that here the two halves of the ribbon are related by a center of symmetry. This makes the $\mathrm{Cl} \cdots \mathrm{N}$ interaction within the ribbon less than ideal, with a $\mathrm{C}-$ $\mathrm{Cl} \cdots \mathrm{N}$ interaction that is far from linear. The metric data for this structure are also included in Table 1.

To make the overall similarity more apparent, Fig. 4 shows the two structures viewed edge-on to one set of ribbons. Although the two space groups are quite different, $P 4_{3} 2_{1} 2$ versus $P 2_{1} / a$, the unit-cell dimensions are similar except that the long axis in the Cl_{4} structure must be doubled. The doubling arises since 2_{1} axes relate adjacent ribbons in the Cl_{4} structure, while 4_{1} axes relate them in the ICl_{3} structure. The cause for this difference is not apparent. Either structure would appear to be reasonable for both compounds.

Experimental

The compound was supplied by Dr Robert Battershell of the Diamond-Shamrock Corporation. Crystals grown from a variety of solvents gave tetragonal plates of inadequate quality for data collection. A very thin, but useable, crystal was finally obtained from acetone.

Crystal data

$\mathrm{C}_{8} \mathrm{Cl}_{3} \mathrm{IN}_{2}$
$M_{r}=357.35$
Tetragonal, $P 4_{3} 2_{1} 2$
$a=6.3657$ (16) A
$c=52.125$ (13) \AA
$V=2112.2(9) \AA^{3}$
$Z=8$
$D_{x}=2.247 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART area-detector diffractometer
ω scans
Absorption correction: analytical
(XPREP in SHELXTL;
Sheldrick, 1994)
$T_{\text {min }}=0.70, T_{\text {max }}=0.96$
18634 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.095$
$S=1.16$
1872 reflections
171 parameters

Mo $K \alpha$ radiation
Cell parameters from 900 reflections
$\theta=3.2-29.5^{\circ}$
$\mu=3.75 \mathrm{~mm}^{-1}$
$T=297$ (2) K
Plate, colorless
$0.15 \times 0.10 \times 0.01 \mathrm{~mm}$

1872 independent reflections
1406 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.098$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-7 \rightarrow 7$
$k=-7 \rightarrow 7$
$l=-61 \rightarrow 61$

$$
\begin{aligned}
& \begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0065 P)^{2}\right. \\
& \quad+9.13 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.02 \\
& \Delta \rho_{\max }=0.43 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack }(1983) \\
& \text { Flack parameter }=-0.02(8)
\end{aligned}
\end{aligned}
$$

Table 1
Distances and angles $\left(\AA,{ }^{\circ}\right.$) in the $\mathrm{I} \cdots \mathrm{N}$ and $\mathrm{Cl} \cdots \mathrm{N}$ contacts in $\mathrm{ICl}_{3} \mathrm{C}_{6}(\mathrm{CN})_{2}$ and $\mathrm{Cl}_{4} \mathrm{C}_{6}(\mathrm{CN})_{2}{ }^{a}$.

X	N	$\mathrm{C}-X \cdots \mathrm{~N}$	$X \cdots \mathrm{~N}$	$X \cdots \mathrm{~N}-\mathrm{C}$
I14	N13 ${ }^{\text {i }}$	169 (1)	3.06 (3)	139 (3)
I14	N21 ${ }^{\text {i }}$	164 (2)	2.83 (8)	144 (8)
Cl26	N13 ${ }^{\text {i }}$	169 (1)	3.36 (3)	140 (2)
Cl26	N21 ${ }^{\text {i }}$	165 (2)	3.13 (8)	146 (8)
C114	N13	134	3.39	165
C115	N13 ${ }^{\text {ii }}$	179 (2)	3.10 (3)	125 (2)
C115	N21 ${ }^{\text {ii }}$	174 (1)	3.27 (10)	115 (7)
C125	N13 ${ }^{\text {ii }}$	176 (3)	3.16 (4)	128 (2)
C125	N21 ${ }^{\text {ii }}$	173 (5)	3.31 (10)	117 (7)
C115	N13	177	3.07	122
C116	N11 ${ }^{\text {iii }}$	172 (1)	3.19 (3)	135 (2)
C116	N23 ${ }^{\text {iii }}$	166 (2)	3.34 (7)	139 (5)
I24	N11 ${ }^{\text {iii }}$	168 (1)	2.99 (3)	131 (2)
I24	N23 ${ }^{\text {iii }}$	163 (2)	3.14 (7)	135 (5)
C116	N13	167	314	137

Note: (a) the entries in each set of contacts comprise the interaction between the major components, then that between the major and minor components, then the minor-major, then the minor-minor, and finally the corresponding values in the $\mathrm{Cl}_{4} \mathrm{C}_{6}(\mathrm{CN})_{2}$ structure. The latter are given without error estimates. Symmetry codes: (i) $1+y, x,-z$; (ii) $1+x, 1+y, z ;$ (iii) $\frac{1}{2}+x, \frac{5}{2}-y, \frac{1}{4}-z$.

A complete sphere of data was collected. All possible Friedel pairs were measured of which $634(51 \%)$ of the 1238 pairs contained information about which enantiomer was present. The refinement converged with a Flack (1983) parameter of -0.02 (8), indicating that the reported enantiomer is the correct one. The molecules are disordered. The two orientations of the disordered molecules were restrained to have the same interatomic distances with an s.u. of $0.001 \AA$. Atoms of the two orientations that overlapped were required to have identical anisotropic displacement parameters.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The author thanks Dr Robert Battershell for providing the sample of the title compound.

Figure 4
A comparison of the packings in $\mathrm{ICl}_{3} \mathrm{C}_{6}(\mathrm{CN})_{2}$ (left) and $\mathrm{Cl}_{4} \mathrm{C}_{6}(\mathrm{CN})_{2}$ (right). The left view is normal to (110); the right, to (011).

References

Britton, D. (1981). Cryst. Struct. Commun. 10, 1501-1508.
Britton, D. (2002). Acta Cryst. B58, 553-563.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1994). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

